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ABSTRACT

This paper presents an extension of the classical concepts of growth

over time and of' a weight-length relationship for a single year-class fishery

that explicitly accounts for the stochastic variation known to exist in such

a population. It also shows how the extended conceptualization enables one

to look at alternative characterizations of a fish population that can be

useful when deciding whether or not to allow fishing. Techniques for estimat-

ing the extended models efficiently are described, as are procedures for

testing for differences in growth and weight-length parameters based on sex

and subspecies. The potential use of these models to facilitate the quanti-

f'ication of population biomass is also presented. Data on North Carolina

pink and brown shrimp are used to illustrate the concepts and models. Algo-

rithms for effecting several of the proposed procedures are included.



l. Introduction

Two relationships of special importance in the study of' a fish species

concern the way in which a fish grows over time and the way in which its

weight relates to its length. The scholarly literature on these topics

 Beverton and Holt, �957! and Ricker, �958!! encourages one to study growth

via the von Hertalanffy growth curve

L = L�� � e !

where Lt denotes length at time t , i denotes the length of a fish at

maturity and K denotes the growth rate. For the weight-length relationship,

these sources suggest the expression

W = aL
b

W and L denoting weight and length respectively.

As conceptual devices, these expressions are helpful. tJsually, they

describe central tendency or mean value behavior. However, they leave con-

siderable room for improvement when one needs to represent growth and biomass

in a model designed to approximate real world behavior. In particular,

�.1! and �.2! do not acknowledge stochastic variation which one

expects to observe when studying individual fish. Also, they provide no

explicit construction for moving from observable characteristics of individ-

ual fish to an aggregate representation of biomass.

See Section 9 for an exhaustive list of definitions.



l'he purposes of this paper are:

1. To extend the conceptual representations in �.1! and �.2! to

account for stochastic variation in a single year-class fishery.

2. To show how the extended conceptualization enables one to look at

alternative characterizations of a fish population.

3. To describe the estimation of the parameters of the extended models

in a statistically efficient manner.

4. To describe how one tests for differences in growth and weight-length

parameters based on sex and subspecies.

5. To sketch how the extended models with their estimated parameters

facilitate the characterization of biomass of a species.

6. To illustrate the proposed extensions and techniques, using data

from tagging studies by McCoy and Brown �967!, McCoy �968! and

McCoy �972! on North Carolina pink and brown shrimp.

The impetus for this work arose in the course of building a model to

study how several alternative shrimp management policies would affect the

performance of the North Carolina shrimp fishery. Preliminary analysis indi-

cated that using  'I.l! and �.2! wi thout accounting for stochastic varia-

tion would fail to capture the variation in growth, weight and length known

to exist among shrimp of a given species within a year. In the course of

modeling, it also became necessary to develop migration and catch-effort

relationships that acknowledge stochastic variation explicitly. These migra-

tion and catch-effort models will be described methodologicalIy and illustrated

with an example in a subsequent technical report.



2. Growth in a Stochastic Settin

Let

tp tagging and release date

L = length of fish at release date

t = recapture date
1

Lt = length of fish on date t > tp

Consider the model

t0+ 1 to+2Lt = a + gL 1 + Ut

where a > 0, 0 < 8 < I and  U ; t = t 41, t +2, ...} is a sequence of

independent identically distributed  i.i.d.! random innovations each having

the normal distribution with mean 0 and variance a > 0 . This last char-

acterization implies

x/a
pr Ut s x! = C x/a! = I $ y!dy

�.2!

0 y! =
1 2

Mm

lf one could track a fish from tp to t] one could obtain the

lengths Lt +1, ..., Lt to estimate a, 8 and o . However, the avail-2

ability of only the more limited data L, t0, L and tl suggests an

alternative appr oach. ln particular, one can write �.1! in the form

= Z +  L-X!g 0 + Vt �.3a!

An innovation at time t can be viewed in this case as a deviation from
the mean length at time t .



where

t-t -l
0

Vt = $ f3 Ut
s=0

�.3b!t0+l t0+2

Here X denotes the mean length of a mature fish, often referred to as L

 Beverton and Holt, 1957, p. 32!. Also, Yt has the normal distribution
with mean zero and variance

2[  2 t-t0!j
var V ! =t l 
 �.4!

Pt L,t0! = Z +  L-X!g 0 �.5!

and its variance is

a< L,t0! = var Vt!

For a mature fish this implies

lim pr Lt < xjL, t0! = Gp x! c �.7!

and more general ly

In practice, �.3a! is considerably more enlightening that �.l! is.

For example, for a fish of initial length L . the mean length of Lt is



Suppose that in a tagging-recapture experiment L differs among fish. In

particular, assume that L has the normal distribution with mean u L! and

variance a  L! . Then the length of a randomly selected fish at time t is2

normally distributed with mean and variance

P  t0! = X + LP L! - X]5 0

at t0! = a  L!g 0 + var Vt!2 2 2 t-t !

respectively, so that

x-Pt t0
pr L< s x~to! = G8 x! = @

t 0

�.10!

Expressions �.7!, �.8! and �.10! provide the basis for many alterna-

tive descriptive factors regarding length, some of which appear in Table 1

 if7.zing Ma2ee ana FemaLea

The results in Table 1 apply for a single species and sex. If in a

given species male and female fish exhibit identical e, X and o then
2

Table 1 continues to apply. Generally at least one, if not all three, param-

eters differ for males and females, and the formulae in Table 1 need modifi-

cation. Let

i = 0,4 and 8 j = 1,2

denote the distribution functions for females  j = 1! and males  j = 2!

Then a randomly sampled fish has distribution
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G  x! = G, 1 x! +  l-p!G, 2 x! Osp

where p denotes the proportion of females in the population. Although

p = .05 is a plausib1e assumption, biological considerations and empirical

data may suggest an alternative value. To obtain the mixed distributions

in Table .1, one substitutes 5. x! for G. x! for i = 0, 4 and 8 .
i 1

Table 2 presents several of these characterizations using estimates

of 6, X and a for North Carolina pink female and male shrimp. Columns2

and 2 show the cumulative distributions of length for a randomly selected

mature female shrimp and mature male shrimp respectively. Column 3 shows

the length distribution for a randomly se1ected mature pink shrimp regardless

of sex.

Column 4 of Table 2 presents a distribution that can relate to the

decision to fish, Suppose that this decision is based on collecting a sample

of N fish regardless of sex. If at least N fish in the sample are at

least x millimeters in length, the decision is to fish. Otherwise, the

decision is not to fish. Since the decision is based on a sample, it is con-

ceivable that these data may fail to support the decision to fish when, in

fact, a complete census  which is not possible! of the fish population would

justify fishing. Assume N = 100 and N = N/2 = 50 . To assess the poten-

tial for a correct decision, Column 4 of Table 2 lists the probability that

at least 50 percent of the mature shrimp in a random sample of 100 are at

least x millimeters in length. Note that if x = 170 millimeters were

the economically determined criterion for allowing fishing in genera1, then a

correct decision would occur only 15.8 percent of the time. Since the popu-

lations generally encountered are not entirely mature, the probability of a

correct decision would be even less than this in practice. If the economically



Table 2

Characterizations for Mature North Carolina

Pink Shrimp

I
Probability that at least
of N randomly selected
mature shrimp  regardless of
sex! have length of at least
x �  = 100 , M = 50!

/N'i

1 i![<0  !j EI Gp "!j

Probability that a randomly
se'lected shrimp is s x
in length

Length
x

 millimeters!

Female

Gp,l x!
Male

Gp 2 x!
Mixed

Gp x!

<2! �! �!

aFor the distribution Gi , x! , the i subscript denotes the rele-
i,j

vant distribution from Table 1 and the j subscript denotes sex.

In particular, j = 1 denotes females and j = 2, males. The nota-

tion Gi x! refers to distribution i from Table 1 for equal percent-
ages of male and female shrimp in a population.

110

115

120

125

130

135

140

'145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

.000

.000

.000

,000

.000

.000

,000

.000

.001

.005

.017

. 047

. 109

.218

.370

.547

.714

,845

.928

.972

.991

.997

.999

.999

.000

.005

. 032

,130

.342

.623

.848

.960

.993

.999

,999

.999

.999

1.000

1.000

1,000

1,000

'1 .000

1.000

1.000

1.000

'1.000

1. 000

1.000

.000

.002

.016

.065

.171

.311

.424

.480

.497

.502

.508

.523

.555

.609

.685

.773

:857
.922

.964

.986

,995

.998

.999

.999

1.000

1.00D

1.000

1,000

1.000

.999

.948

.691

.562

.523

.473

,356

.158

.017

.ODD

.OOD

.OOD

.000

.000

.000

.000

.000

.000

.000



determined criterion is x = 140 millimeters, then a correct decision occurs

with virtual certainty. This example is one illustration of the characteri-

zations available through Table 1,

Computing a G.  z!

coding in the FORTRAN programming language, uses FORTRAN's built-in error

function ERF  ~ ! . Algebraically the error function is

z 2
e z! = � ! e y dy

0
0 < z <

so that

-~<ZOO0.5

�.14!C z! =

0.5 + 0<z<~

In a FORTRAN program one need only substitute ERF  ~ ! for e  ~ ! . Once

G, x! for i = 0, 4 and 8 are computed, the computations of G.  x! for1

i ~ 0, 4 and 8 use the formulae in Table 1;

Quantize@

Probability distributions can provide considerable useful information

for characterizing a fish population. This is especially true when one takes

the extra steps to look at the quantiles of the distribution. Let G. denote
i

FormuIae for evaluating I  ~ !, and thereby G.   ~ ! for i = 0, 4 and 8

appear in Abramovitz and Stegun �964!. However, a more direct method, when



a cumulative distribution on length. Then its pth quantile is

�.15!q. p! = min[x; p < 6. x!] 0 < p < 1

For example p = 0.5 yields the median q.�.5! . Note that for p = 0.5

�.16!q0�.5! = u t0!

However,

This is an important point, since one often focuses on the large members of

a fish samp'Ie whose distributional characteristics Chffez from those of a ran-

domly selected fish. Table 3 lists selected quantiles for male and female

pink shrimp taken in North Carolina waters, usinq N = 100 and assuminq

o = 0.5 . For management purposes, an analysis based on quantiles may occa-

sionally be more appropriate than one restricted to the data in Columns 1, 2

and 3 of Table 2 . This is so because managers have an understanding of the

commercial meaning of length. For example, note than the median length of a

randomly selected mature shrimp is 152.34 mn. That is, 50 percent of a

random sample of mature shrimp would exceed 152.34 mm. in length. However,

the median length would be 208.22 mn. This means that in 50 percent of the

samples, the largest shrimp would exceed 208.22 mm. in length. The issue of

importance here is whether one wants to characterize a population by a randomly

selected member or by the largest member in a randomly selected sample.

The binary search in algorithm g provides a relatively simple method

of computing g,. p!:

if one were to examine the largest shrimp in many successive batches of N = 103 ,



Table 3

Selected guantiles for Mature North Carolina Pink Shrimp

N = 100 and p = 0.5

Maximal Length in a
Sample of 100 Shrimp

Length of a
Randomly Selected Shrimp

Female

Q , p!
Mixed

60 P!
Male

a0 2 P!
Female

ql l P!
MixedMale

a, 2 P!

.95

, p! = minLx:

Q; p! = C :
of G. . x! and

i ~J

p<G.  x!] for i =0,1 and j=1,2.

< G . x!j for i = 0,1 . See Table 2 for definitions1

C,. x! .

71

.05

.10

.20

.30

.40

.50

.60

.70

.80

.90

165.28

169.43

174.31

177.85

180.84

I83.65

186.52

189.51

193.30

197.99

201,90

121.33

123.90

126,98

129.18

131.07

132.84

134.58

136.47

138.67

741 .72

I44.42

123.90

126.95

137,10

134.58

738.67

152.34

174.31

180.90

186.52

193.11

197.99

204. 71

205.96

207.58

208.83

209.99

211.12

212.31

213.65

215.36

217.95

220.21

145.93

146.72

147.73

148.52

149.24

149.94

150.69

151.53

152.58

154.20

155.64

201.11

202.51

204.31

205.71

206.97

208.22

209.53

270.99

212.82

215.57

218.01



1. L~O.

U ~ L*

3. x ~  L+U!/2 .

4. If  p-G x!  < 6, x is the desired quantile.

5. If p < G x! , U ~ x and go to 3

6. L~x

7. Go to 3.

12



3. Maximum Likelihood Estimation for Growth Curves

This section describes one way of applying the maximum likelihood method

cient use of the sample data, both in estimation and in hypothesis testing.

Let

X = length on tag-release date

Y = length on recapture date

2 = elapsed time in weeks  or fraction thereof! between release and
capture

N = number of fish in a sample.

Define 0 x! = g and

g g,X,< [X,Y,Z! = exp

and let the subscripts i denote subspecies; j , sex; and k , the kth

in a sample of N, . fish of subspecies i and sex j . Also, let

-"ij ij' ij' ij ' � � ll ' � 12' � 2l ' � 22

N
lj

ij � ij + � ij ~ ljk ljk' ijk
k=1

� 2!

Then for two subspecies the likelihood f~ction is

to the estimation of the growth rate g , the mean length at maturity

and the measure of variation g . The method is known to make the most effi-
2



In practice, concentration on the Loglikelihood function

2 2

m ~! = ln h ~! = ! ! m.. ~, !
lJ � 1 J

where

N..
iJ

mi. ~i,! = ln hi, ~..! = $ ln g ~iJ!X.,k, Y,.k, Z,.k!, �.5
k=1

facilitates analysis and computation. Therefore, without loss of generality,

we concentrate on m <o!.

Let 8 , X , and a..
1J lj iJ

pectively, that maximize m ~!

known to have particularly attractive statistical properties. With regard to

estimation they are consistent, which means that they converge to the true

parameter values in probability as N,. increases. For given large N.,
Ij lJ

they have minimum variance among all possible alternative estimators. With

regard to hypothesis testing, they lead to a uniformly most powerful test of

a null hypothesis Ko against an alternative Kl . This means that the prob-

ability of rejecting HO when it is false is greater than the corresponding

probability for any alternative test of this hypothesis. Moreover, the test

is consistent, which means that this rejection probability when K is false

increases.

A2oi.! . Inspection of �.4! revea1s that when
iJ

converges to unity as N..
1J

Let ~.. =  g,
� iJ lJ lJ

m z! is at its maximum

be the val ues of g, A .. and a, res-
2

iJ iJ iJ

and, therefore, h ~! . These estimators are



3m..  u>..!
�.6a!aB,.

Sm,. ru,. !
�.6b!

i,j = 1,2 . �.6c!

Define

i 'k i 'k i kY.. � X., 8 Z.. !

l + B ~.j.!
�. Sa!

1 g Z .!,!
B..N I3! =

! + s z !
ijk

�.>b!

i Y, �- E[l-B Z. 'k! ~ � X. 'kB z ' 'k!» B >! ijk i'k i'k i'k
I � 5�Z .k!

�.7c!

where B x! = B . Then explicit evaluation of �.6a!, �.6b!, and �.6c!

shows that



8 ~   ! 1J

ij N 'leak 1J IJij k=1
�.8b!

on a binary search to find
ij

1. L+.0 .

2. U~l

3. Initialize B .
lJ

4. Compute 7.. using �.8a!
lj

5. Compute o., using �.8b!
TJ

6. m.. + m.. i..!, which uses �.5!i J ij � lJ
LiU

1J 2

8. Compute X.. using �.8a!
1J

A2
9. Compute o,. using �.8b!

1J

10. Compute m.. ~..! using �.5!ij -ij

16

A2
Note that X.. is a function of 8,. and that o.. is a function of A..

lJ 1J iJ 13

and 8.. . To find ~.. one can use an iterative procedure that exploits
1J � 1J

these relationships. Algorithm NLEG describes one such procedure that relies



~m.. - m.. ~..!~iJ ii -iJ

If m.. ! m.. >..!
ij lJ � 1J

a. If g..<5, U~
lg lJ

b. L ~ g,, and go to 7
iJ

13. m.. ~ m.. ~..! .
iJ iJ i3

14. If g..   8 , L g..
1J lj 1J

15. U~9..
lj

16. g.. ~ g..
iJ lJ

17. Go to 7

return with z.. and m.. ~,.!� 1J lg � i!

g.. and go to 7 .
1J

and go to 16

Although we currently have no proof that h ~! is unimodal, experience

with the shrimp data for several different initial values in L0,1! in step 3
rh

lead to the same final value for g... If one inclines to discard this exper-
1J

ience, one should execute the coded algorithm for several different initial

values in [0,1! in step 3 and, if the final values of v.. differ, choose� iJ

the vector with the largest value for m z..! . Table 4 lists maximum like-� iJ

lihood estimates for North Carolina pink and brown shrimp by sex.

E'+amino@ Length Reaidua7s

hlhenever one fits data to an assumed model such as �.3! , some proof

of the fit of the model is of seminal importance. Rewriting �.3a! as

v = L - z -  L - ~!g o
t-t

t

one sees that V has mean zero and variance a Ll � 5 O'J/�-5 !2~I 2 t-t ! 2

�.g!

Then Vt/ has mean zero and variance unity. If for

17



Table 4

Maximum Likelihood Growth Parameter Estimates for

North Carolina Pink and Brown

Shrimp by Sexa

u.. = A.. I-g..! ; see �.3c! . K.. = -In g.. ; see  I.l!
iJ iJ 1J 1J 1J

each fish one could observe the innovation V , normalize it by standard

t-t
deviation and plot it versus > +  L � ! !f3 0 , one should observe a plot

to
of normally distributed random quantities with mean zero and variance unity.

In particular, the plot would show no association between >+ L � A!g 0
t-t

to

and Vt/ Any alternative picture would give reason

for being suspicious of the data, the model or both.

Although one cannot observe Yt in practice, one can compute an approxi-

mation to it using the maximum likelihood results. Let us concentrate on



subspecies i and sex j . One prediction of the length of fish k in this

sample is

�.10!

lee call

S , = Y.. - Y,.
ijk ijk ijk �.11!

the res~dua7. for fish k . Then one can show that the normalized residual

S..
ijk

is an approximation to the unobservable innovation associated with this fish

and, therefore, a plot of {Y..k, K..k, k = 1,...,N..! approximates theijk 1 jk ' ij

aforementioned desired plot.

19

Figure la shows a residual plot for North Carolina brown male shrimp

using all available data. Note the points marked with circles. To the most

casual observer, they suggest a behavioral pattern other than a random one.

A check on these points revealed that the associated fish all were caught

during the first week after release. Suspecting possible errors in recording

their lengths or recapture dates, we decided to omit these samples. Figure

lb shows a more acceptable-appearing revised residual plot omitting these

points.

One can also check on the approximate normality of the S..k by plotting
ijk
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the empirical distribution function

N..

F s = j:F s! = N   j  j  S, .k!
ij k=1

S..k <s

against the cumulative normal distribution function c s! where c  ~ ! is

defined in �.2! , A straight line supports the assumption that the inno-

vations are normally distributed. Figure 2 shows these confirming results

for North Carolina brown male shrimp.

22
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VERSUS EMPIRICAL DISTRIBUTION FUNCTION
FOR NORTH CAROLINA BROWN MAI E SHRIMP
GROWTH- TIME RELATIONSHIP



4. Testin for Sex and Subs ecies Differences in Growth

The reader will note the apparent distinct values for Bll, 812, 821 and
A2822 and similar differences for the A..'s and a..'s . Regardless of whe-

1J ij

ther in reality the 8,,'s were equal, the A..'s equal and the a..'s equal,
lj iJ lj

one would expect sampling variation to produce distinct B..'s, X..'s and
1J 1J

A2
cr..'s . Since a basic principle of modeling is to reduce quantitative descrip-

iJ

tion to the fewest parameters necessary for adequate representation, one would

like to determine if the observed differences are real or due to sampling

variation. In the present setting one can use the L~kelihooi ratio  to be

defined shortly! to test for equalities. In particular, we begin with the

null hypothesis:

Ho. Shrimp of subspecies i and sex j grow at rate

8, , have mean length X.. at maturity and exhibitij' 1J

a degrees of variation o.. in length.2

lj

Initially we concentrate on three alternative hypotheses:

Hl. Shrimp of different subspecies and sex grow at the

8 81'I 812 82l 822 ' have the

same mean lengt»t maturity  ~ = ~ 1 = ~12 = >2] = ~22!

and exhibit the same variation  a = all = al2 = o21 = o22!

H2. Regardless of sex, shrimp of a given subspecies grow at

the same rate  81. = Bll 812' 82 ' 821 822!

24



have the same mean length at maturity  X

A2 = 121 = X22! , and exhibit the same variation

  2 2 2 2 2 201 011 = cf1 2, 02 = 621 = 022!

H3. Regardless of subspecies, shrimp of a given sex grow at

~.l ~11 ~21' ~.2 ~12 ~22 , have

the same mean length at maturity  X

X 2 = 112 = A22! and exhibit the same variation
2 2 2 2 2 2
~ 1 11 2I ' 2 l2 22~

For Hl and N Nll + N12 N21 + N22

2 'fJ

�.1!2 N ~-z ~i z I I~ !"  - .!
i=1 j=l k=1

fo r k2'

N..
1J

lj

~ 'ijk~'i' ~

�.2!

1 y. �! 2 ij
I: 'ijk~<; ~ ';.~

il i2 J=l k=1
i = 1,2 ;

25
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i=1

2

i=1

2

'=1

1

j=l

2 ij
N..

B; k i!
j=l k='I



and for W3..

2 iJ
N..

a..  i .!
i=1 k=1

~ j N..

i=1 k=1

 C.3!

1j 2j i 1

N,.
1J

1 jk j jk=1
j =1,2

Let

� "0 811' 12' 21' 22' ll' 12' 21' 22' ll' 12' 21' 22

"2 "2 "2 "2
 9, P, l3, 8, !, A, K, A, o , r , cr , a !

 z.4!
A A A A P AZ AZ AZ AZ

1 ~ ' 1 ' 2 ' 2 ' 1 ' 1 ~ ' 2 ' 2 ' 1 ' 1 ' 2 ' 2 ' !

A A e a w w e n, AZ AZ AZ AZ

 ~-1' ~ 2' ~ 1' ~-2' 1' 2' 1' 2' .1' .2' 1' 2

To test H0 versus Hk for k > 0 , one uses the likelihood ratio

Rk = h ~<u ! jh ~<u ! . If Hk is true, then it is known that as Nll, N12,

N21 and NZZ increase, the quantity -2 1n Rk has a chi-squared distribu-

tion with 9, 6, and 6 degrees of freedom for k = 1, 2 and 3 respectively.

Let X be a chi-squared random variable with f degrees of freedom and

define



Pk = pr X ! -2 ln Rk]Hk is true!

Here Pk is the P-value associated with hypothesis H and is a measure of

its credibility, For example, one inclines to accept a hypothesis whose

P-value, say, exceeds 0.05 but is reluctant to place much confidence in an

hypothesis whose P-value is less than, say, 0.01

Table 5 gives -2 ln Rk and Pk for hypotheses 1, 2 and 3 . Here a
low P-value encourages us to reject hypothesis 1, that no differences exist

with regard to subspecies and sex. Note that the P-value for hypothesis 2

encourages us to reject the hypothesis that sex does not matter. Similarly,

we reject hypothesis 3 that subspecies does not matter.

Table 5

Likelihood Ratio Tests for

North Carolina Pink and Brown Shrimp Growth Parameters
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5. Wei ht-Len th Relationshi

Studies of the weight-length relationship in fish customarily use the

model

W = aL
b

�.1!0 < a,b

where W denotes weight and L denotes length. Here we consider a more

complete quantitative description

W = aL z
b

�.2!

where q = ln ~ is a normally distributed random variable with mean zero and

variance y . To estimate a, b and y, one uses the Finem-~zsd model
2 2

ln W = a + b ln L + n
�.3!

a =lna

the maximum likelihood method except for a minor adjustment to the estimate of

Therefore, they have all the desirable statistical properties mentioned
2

in earlier sections.

Goodness-of-Fit for Height-length Model

As in the case of the growth curve, one would like to check the extent

28

In practice, one may apply the linear least-squares regression method to

�.3! using a sample of weight-length data for each subspecies and sex. The

resulting estimates for the shrimp data appear in Table 6 . Since n is

norma1, these least-squares estimates are identical to those attainable through



Tab1e 6

Maximum Likelihood Estimates for the

Weight-Length Relationship

for North Caro!ina Pink and Brown Shrimp

~ij N..
lj

x 1 eas t-squares es tima te of 2

1J

to which the form in  S.3! app'lies and the extent to which normality applies.

Although the random term q is not observable for each fish, one can approxi-

mate it for fish k of subspecies i and sex j by the residua1

P

1jk = ln WlJk lj 1J ln L1Jk

Let ln W..k = a.. + b.. 1n L..k and n,.k = qi k/y.. . In contrast to1Jk 1J 1J 1Jk 1jk iJk lj

Section 3, one expects the residuals to have a relatively constant variance

for large N... However, as before one expects a p1ot of  TI k, 1n W, k.1J

,N f to reveal no association. Since high correlation can occur betweenlj

ln Wi k and ln L.,k even when n" k and 1n W..k show association, the correla-ijk ijk 1jk 1 jk

tion coefficient is not a sufficiently comprehensive measure of goodness-of-fit

for present purposes. Figure 3 shows an example of this plot for pink female

shrimp. No pattern appears here, nor do any appear for pink male, brown female

29



~ ef e ~ ~ ~ +a e ~ ~ f s ~ soke ~ s ~ >s ~ s ~ f ~ ~ ~ ~ $e ~ as f ~ a ~ ~ +e e so+ ~ e ~ eke ~ ~ ef ~ ~ ~ e s

8.0 f

6.4 f

3.2+

1.6 f

21
1

1
'1 1

1

0.0 f 21

22
21

21

-1.6 f

-3. 2

~ e ~ ~ f ~ s e s asi ~ +ssse+iii ~ fess if ~ ~ ~ i+i i ~ ~ f ~ ~ i if ~ e ~ sf ceo ~ fee ~ st
1.R 2.2 2.b 3.3 3.

1.< 29 2 P

ql

3.6

FIGURE 3. RESIOUAL Pl OT FOR NORTH CAROLINA PINK FEMALE
SHRIMP WEIGHT-LENGTH RELATIONSHIP

30

1 2
111

1 i 21 33
1 112'

1 1 1 2

1 1 16

1 1 112

1 1121

1 ll 2

1

12 1
1U 412121

63
13 144215

4121 363
2 11221 11

24 3 11121

1111 2 2 1

1 311 1

11 2

2 11



or brown male shrimp.

To check for normality the empirical cumulative distribution function

can be plotted versus C s! . Figure 4 shows  F,  q,-.k!, C rI; -k!;

k = 1,...,Ni j for pink female  i = 1, j = 1! shrimp. The relative

straight 1ine is encouraging evidence of normality. The plots for pink male,

brown female and brown male shrimp are also relatively linear, offering addi-

tiona1 evidence of normality.
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6. Testin for Sex and Subs ecies Difference

In the Hei ht-Len th Re!ationshi

sex when they exist. Again we consider four hypotheses:

HD. Shrimp of subspecies i and sex j have parameters

a , b.. and y,,2
1J iJ ij

H!. Neither subspecies nor sex affects the weight-length

ll 12 a21 22' b=b
2=2=2=2=212 21 22 ' Y = Yll Y
 Y21 = Y22

H2. Sex does not affect the weight-length relationship:

b! = b!! - b!
2=2=2

Y2 ~ Y21 = Y22

1 ~ 	 12

b2 = b2! = '22
2 ~ 21 22 '

2 2 2
~ Y!. = Y	 Y
 '

H3. Subspecies does not affect the weight-length relationship:

.1 ll 21
2 = 2 = 2

Y 2 = Y
 = Y22b, = blZ = '22
a 2 = a
 = a22
2=2= 2

Y,! Y!! = Y21

Fortunately, estimates of these quantities under each hypothesis are

easily obtained by a standard linear least-squares computer package such as
BMD  !975! or SAS  !976! . Let a circumflex over a quantity denote an
estimate. Moreover, one can show that Rk , the likelihood ratio of Hk

33

As in the case of growth, it is a desirable objective to reduce the num-

ber of parameters  a , b , y , i,j = 1,2} to a smaller subset. In par-2

iJ iJ iJ

ticular, doing so enables one to identify simitarities across subspecies and



versus HO, s impl i f i es to

R
1 N = N11 12 21 22

1

  2 ! i1 i22 N. +N. 2

R
2

 ~2 ! lj 2J
'j

R
3 �.1c!

Under g , -2 ln R asymptotically has a chi-squared distribution with

9, 6 and 6 degrees of freedom respectively. Table 7 presents the results

of hypothesis testing, which tend to favor N : the weight-length re1ation-0'

ship is heterogeneous across subspecies and sex.



Table 7

Hypothesis Testing for

Meight-Length Relationship
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7. Distribution of Biomass

an individual mature shrimp. RecaI1 from Section 2 that a mature shrimp has

a normally distributed length with mean X and variance o = a j l-g !2 2 2
L

Also recall from Section 5 that weight and length are related by

W=aLti b
�.1!

where a and b are constants and ln q is a normal variate with mean zero

and variance y . Then weight has mean2

E W! = aE L !E n! �.2!

and variance

�.3!var W! = a IE L !E q ! � E  L !E  q!]2 2b 2 2 b 2

36

Although the growth-time and weight-length re1ationships of earlier

sections provide useful characterizations of individual North Carolina shrimp,

more often than not interest focuses on aggregate descriptors such as biomass.

In addition to the aforementioned growth and weight-length descriptors, bio-

mass depends on recruitment, mortality, migratory patterns and fishing inten-

sity, at a minimum. Although the current report in no way addresses these

factors, we can show how knowledge of the growth curves and weight-length

relationship allows us to describe the distribution of biomass of a population

of N mature shrimp. A later report wi11 extend this development to the

case of constant recruitment at varying intensities where all shrimp are not

mature.

We begin our discussion by computing the mean and variance of weight of



Now

2E n! = eY ' 2 2YE q ! = e ~

E L ! ~ A< + qk c!

where

�.6a!

~L c-i+1!
g;   ! = gl 1  ! g0 c! = X �.6b!

and p, is the i th moment of a normal random variable from N�,1! .

For example, k = 6, which approximates well in practice, leads to

~2 l 3 ~

S = 105 ~12 � 10395IJ10 = 945

Then one has

E W! = ae L~ i qk b!j1'2 b

var M! = a e  e [X + h �b!] - L~ + q  b!] ! ~

37

as a consequence of the normality of ln q . Moreover, the normality of L

enables one to write for aL jX ~~ 1 and noninteger c



The = symbol serves to remind the reader of the approximating nature of the

result. In general, estimates of b will be nonintegral. Rounding b to

an integer can lead to serious error.

Although the weight of an individua'I fish is not normally distributed,

the biomass of N fish, where N is large, has a normal distribution with

mean N E W! and variance N var W! . Let the subscripts i and j denote

subspecies i and sex j and suppose that the proportion of fish of sub-

species i and sex j in a population of N fish is p.. for i,j = 1,2
lj

so that pll + p12 + p21 + p22 = 1 . Then the biomass BN for large N

has a normal distribution with mean

E BN! N 3 p,ja,je ij L>;jij + qk b,j!!
1, j=1

�.10!

and variance

P..a- e ij Xi.ij + qk�bi.!
i,J=1

var BN! = N

2 2/2 b 2

i,J=1
�.»!

3B

The reader. should regard �.10! and �.11! as the i'llustration of a

concept. In an observable population, not all fish are of the same age,

Therefore, the characteristics  mean, variance and distribution! depend on

the proportions of fish of different ages. Expressions �.10! and �.11!

can be modified when these proportions are known. We do this in a subsequent

paper when tracing the migratory pattern of North Carolina shrimp.
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9. Definition of Terms

Page of
First NentionDefini tionTerm

ln a

A, k 8! 15

8i jk�!

8iomass of N fish. 38

e  ~ !

E  ~ ! 36

ERF  ~ !

X l-8 ! � Xg andg  !

13

g,.  c! 37

G0  !

G4  !

G8 '!

G.  r!

13

40

8N

C, k 8, i!

G,,'  ~ !
h ~!

Parameter in weight-1 ength relationship.

Function used in maximum likelihood estimation
of growth parameters.

Parameter in weight-length relationship.

Function used in maximum likelihood estimation
of growth parameters.

Function used in maximum likelihood estimation
of growth parameters.

Error function.

Expected value operator.

Fortran error function.

Normal density with mean
1 2 z

variance

Recursive function used in calculating q c!

Distribution of length of mature shrimp.

Distribution uf length of a shrimp at time t
given length L at time tD .

Distribution of length of a shrimp at time t
given length L at time t is normally distributed
with mean u L! and variaIIce a  L! .
Mixture distribution of the distributions G.l  ~ !
and G.l   ~ !

Distribution i for sex j  i = D,4,8!

Likelihood function for growth parameter estimation.



Page of
First MentionDefinitionTerm

Indicator function.

Instantaneous growth rate.

Length.

Temporary storage used in algorithms.

22

0 p.L*.~! � 12
MLEG � 16

Length at time t .

Mean length at maturity.

ln h ~!

Number in sample. 13

M u, 1! Normal distribution with mean p and
variance unity. 37

Function used in Taylor expansion of E L !

Function used in Taylor expansion of E L !

pth quantile for the distribution G,  ~ !

Likelihood ratio for hypothesis k .

Residual length for fish k .

Normalized residual length for fish k .

Temporary storage used in algorithms.

37

k  ~ !

9; p!

37

10

26

19

19

q p,L*,~! - 12
MLEG � 16

Linear combination of

Meight.

Vt U s .

Length of a shrimp at time of release in a
mark recapture study.

13Length of a shrimp at time of recapture.

Time interval between release and recapture, 13

41

Normally distributeg random variable with mean
0 and variance a



Page of
First MentionDef ini ti onTerm

L  I - B!
-K

e

BB z!

2
Y 28Variance of

Accuracy parameter for algorithm MLEG.

Lognormally distributed random variable. 28

Normal'Iy distributed random variable with mean
0 and variance 28

Mean length at maturity  see L ! .

Mean length at time tO,

i th moment of a s tandard normal random variable.

Mean length at time t given u L! and o  L!2

v L!

37

ut t,!

t ' 'o! Mean length at time t given length L at time
tD

Probability that a shrimp from the sampled popu-
lation is female.

o  L!

t  to!2

Variance of length at time t< .

Varian~e of length at time t given u L!
and o  L!

ot L, to!2 Variance of length at time t given length L at
time tD

Standard normal density.

Vector of growth parameters.

Note:

 ii! Any parameter with " above it is an estimate of that parameter.
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 i! Unless otherwise indicated, all subscripts i, j, k are interpreted
as i: subspecies, j: sex, k: individual




